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Most key elements of ferroelectric properties are defined through the hysteresis loops. For polycrystalline ceramics, each 
grain exhibits a specific loop and contributes to the ferroelectric ceramic’s one. The resulting hysteresis loop is influenced 
both by the frequency and temperature. In this paper, we propose a polycrystal hysteresis model describing the hysteresis 
in ferroelectric materials as a function of the temperature and frequency. This model, based on the Landau 
phenomenological thermodynamic potential theory, allows determining the behaviors of ceramics. This theory differs from 
the classical phenomenological ones : it is a macroscopic -based thermodynamic approach and it can provide the evolution 
of polarization state, and other coefficients as a function of electric field, temperature and frequency simultaneously. The 
proposed model is developed, discussed, and compared with experimental piezoelectric characterizations on a PZT based 
piezoelectric transducer ceramic. Hysteresis loop comparisons between modeling and experimental data are given and are 
shown to be in good agreement with the polarization versus electric field and temperature. It is interesting to note that the 
model developed in this paper could also predict the dielectric constant (ε33) as a function of the electric field using a simple 

P(E) measurement. 
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1. Introduction  
 

Piezoelectric ceramics are commonly used in 

numerous piezoelectric actuators and sensors [1-3]. Most 

ferroelectric materials behave as piezoelectric for low 

driving levels. Increasing levels (electric field, temperature 

or stress) lead to a depoling resulting in dielectric and 

piezoelectric performances degradation. It is usually 

considered that this latter phenomenon is due to the 

irreversible domain wall motion as well as nucleation and 

growth of domains with new orientations [4-8]. The 

resulting nonlinear and hysteretic nature of piezoelectric 

materials induces a power limitation for heavy duty 

transducers or a lack of controllability for positioners. 

Consequently a nonlinear modeling including hysteresis 

appears to be a key issue to get a good understanding of 

transducers behavior.  

Some of the applications, such as those in space, 

involve environments where the electric field and 

temperature varies over a wide range. It is therefore 

necessary to characterize the behavior of these ceramics 

over a wide range of possible operating electric fields and 

temperatures. Electric field and temperature variations will 

result in significant nonlinear behavior of the material’s 

coefficients and will therefore affect its overall 

performance [9-13]. This nonlinearity occurs due to the 

material composition, dopants and internal defects, 

microstructure and is dependent on the magnitude of the 

temperature or electric field variations. Aside from the 

hysteresis and nonlinearity discussed above, ceramics are 

also useful in many applications to enhance the 

pyroelectric and electrocaloric effects of piezoelectric 

materials used for energy harvesting and refrigeration [14-

18]. In general to understand these observations, we recall 

that the piezoelectric effect includes both intrinsic and 

extrinsic contributions, as discussed by Damjanovic [19] 

and Zhang et al. [20]. The polarization P will be equal to 

P=Pint+Pext where dint is the intrinsic or the single-domain 

response and dext is the extrinsic or domain walls and other 

defects response which involves irreversible domain wall 

motion. In previous work [16], the depolarization process 

with temperature was shown to be due to due to the 

decrease of the dipole moment induced by the variation of 

unit cell parameters (intrinsic effect). Domain switching 

(extrinsic effect) occurs only near the Curie temperature 

and is responsible for the hysteretic behavior of 

polarization with temperature. Under an electric field, the 

depolarization of the sample is mainly due to domain 

switching [21]. 

Several microscopic and macroscopic models have 

been proposed in the literature for understanding the 

hysteretic behavior of various materials [22-26]. However, 

the majority of these models are purely electrical or 

thermal. It is consequently difficult to correlate the results 

to both solicitations (the electric field and temperature 

simultaneously) in order to obtain a clear physical 

understanding.  
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In order to solve this problem, we propose a model in 

this paper. This model accurately simulates the process of 

polarization reversal and allows describing the P–E loops 

of a polycrystalline system, this model being based on the 

modification of Landau-type phenomenological theory. 

This model enables to express the polarization as a 

function of temperature and electric field. The model was 

validated experimentally for different frequencies. 

In the second part of this study, the proposed model 

was used to predict, starting from measurements at several 

temperatures, the dielectric coefficient values as a function 

of electric field intensities.  

Comparisons simulation/experimentations made on 

soft Pb0.95La0.05Zr0.45 Ti0.45O3 piezoelectric ceramic.  

 

 
2. Hysteresis loop modeling based on the  
    theory of Landau Devonshire 
 

This model is based on the phenomenological theory 

of Landau - Devonshire aimed to describe the order – 

disorder transitions, ignoring the specifics of the particular 

system considered [27-28]. This theory has been applied 

for the first time by Devonshire on BaTiO3. First, this 

work is focused on the ferroelectric behavior only and 

dissipation of energy during the polarization will be 

introduced later. The dissipation term can be modeled as a 

modified equivalent circuit. Figure 1 shows this equivalent 

circuit for which a resistance is added in series to the 

perfect ferroelectric ones. Usually, the structure is 

considered parallel to the piezoelectric ceramics, but this 

structure does not explain the non-reversal of polarization 

observed on some ceramics. To model the energy 

dissipation, we introduce a term 
dt
dPτ  taking into account 

the variation of polarization with the electric field, with τ : 

the dissipative coefficient. 

 

 
 

Fig. 1. Schematic model. 

 

 

A crystalline solid can be characterized 

thermodynamically by its internal energy U. The free 

energy F can be expressed in terms of internal energy U as 

follows. 

 

F = U - θS -   with 

 θ: temperature 

S: entropy  

: Stress 

: Deformation 

According to the theory of Landau - Devonshire, the 

differential internal energy U can be expressed by: 

 

dU= T dS+EdP+d 

 

where E is the electric field and P the polarization. 

We can also express dF (differential free energy) from 

the Helmholtz free energy (F = U-TS) and the differential 

of internal energy. The differential free energy can then be 

written as: 

 

dF=-SdT+EdP+εdσ 

 

Assuming that the effects associated to the transition 

depend mainly on the polarization, we therefore developed 

the free energy (second order transition) power of P near 

the transition temperature   . The free energy of 

ferroelectric ceramics, determined at constant stress, 

depends on the temperature and polarization. It is 

expressed by: 
2 4

0

AP BP
F(P,θ) = F (θ) +  + 

2 4            

(1) 

A and B are two variables depending on the temperature. 

 

 

 
 

Fig. 2. Landau Devonshire energy vs. polarization 

 

This function presents two minima which correspond 

to energetically stable states of polarization (Figure 2). 

Indeed stability imposes

2

2

F

P


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
0 .           

with  > 0 and B> 0 as to be chosen in such a way that the 

solution for        is P  0. The equation becomes: 
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(2) 

 
with: θ and θc corresponding respectively to working and 

transition temperatures. 

Since E=dF/dP, we can write: 

 

3)( BPPa
P

F
E C 




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                       (3)
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Pr corresponds to the minimum of the function F(P, ) to E 

= 0. Therefore, the remanent polarization is the solution of 

the equation 0)( 3  BPPa C
.  

To solve this equation, 3 solutions are possible:  

Pr=0 (non polarized materials), and B

a
P C

r

)(  


 

(ferroelectric material). 

 

The coercive field corresponds to 






E

P

 when 
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. Equation 3 can then be written as 

follows:  
2

c 2

r r

3 3 P P
E = E -1

2 P P

 
   

                        (4) 

Taking into account the constant (Pr and EC) defined 

previously, the polarization can be plotted as a function of 

electric field using equation 4 (Fig. 3). In the region           

(b - e), shown in dotted line, the value of ɛ is negative 

because 

P
 <0

E



 . 

Such value has no physical meaning (ɛ<0) and the 

stability conditions are not respected. Consequently the 

polarization does not follow this path but for specific value 

of electric field it passes directly (jump polarization) from 

b to c and from e to f respectively.  

 

 
 

Fig. 3. Polarization vs. electric field: the polarization describes 

the cycle (a–f–b–c–d–c–e–f–a), (b – e) unstable region. 

In order to model the hysteresis loop and improve the 

results found with Equation 4, the resistance R was added 

corresponding to a dissipated energy during polarization.  

 
2

c 2

r r

P 3 3 P P
E = τ  + E -1

t 2 P P

 
 

                      (5) 

 

The resistance R placed in series with the ferroelectric 

allows to introduce the effects of frequency in the model. 

The losses term 
dt

dP
τ

 allows dissipating the energy by 

friction of domain walls.  

In order to highlight this phenomenon, we performed 

numerical simulations for different frequencies. The figure 

4 presents the simulation results obtained for several 

frequencies and the experimental results obtained on the 

PZT ceramics. For low frequencies (50 mHz), the cycle is 

symmetric and the value of the coercive field is close to 

the experimental one. When the frequency increases, the 

term 
dt

dP
τ

becomes more important and this is observed in 

the hysteresis loop by an increase of the coercive field. For 

high frequencies, the cycle is not symmetrical and the 

polarization does not saturate. A part of energy is 

dissipated in the resistance and consequently the effective 

applied field decreases. Then, the applied electric field has 

to be increased to return the polarization, but without 

exceeding the breakdown voltage of the ceramics. The 

non-reversal of polarization is determined by the value of 

dt

dP
τ

 parameter for soft ceramics, the value of 
dt

dP
τ

must 

be low because we can polarize at relatively high 

frequencies. It is the reverse for hard ceramics. 
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Fig. 4. Comparison between experimental and simulation 

results for the P/E cycle: (a) simulation, (b) experimental 

 

 

According to physical analogy of equation 5, a 

ferroelectric material is equivalent to the perfect 

ferroelectric one in series with a resistance. It seems 

interesting to observe the influence of polarization (P) and 

the electric field E on Ef (electric field on the perfect 

ferroelectric) noted over time.  

In this case:  

f

P
E = E - τ

t



  

 
Figs. 5a,b,c show the evolution of E, Ef and P at 0.05, 

0.5 and 5Hz respectively. At low frequency, the electric 

field (Ef) at the terminals of ferroelectric cycle decrease 

below the coercive field (Ec = 0.8 MV / m) and therefore 

we can reverse the polarization. By increasing the 

frequency (or the value), the field on the ferroelectric 

becomes very asymmetric. The minimum value of Ef is 

less than the coercive field and therefore cannot reverse 

the polarization. At high frequency, it becomes impossible 

to reverse the polarization for the negative field.  

 

 
 

 

 
Fig. 5. Evolution of E, Ef and P for different frequencies. 

  

 

Considering that the model is representative of the 

experimental reality, we can find a physical reason for the 

term of dissipation 
P

τ
t



  :  

The term dissipation of energy can be attributed to: 

 A “dielectric viscosity”. All the elementary 

polarizations (domains) do not switch simultaneously 

leading in a macroscopic delay. 

  A significant resistance at the grain boundaries or 

domain walls (domain/domain). In fact, this model 

(ferroelectric perfect +resistance) is equivalent to a series 

of grains or domains (Fig. 6). 
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Fig. 6. Schematic structure of model 

 
 
3. Temperature effects 
 

The remanent polarization of a piezoelectric ceramic 

decreases with temperature and vanishes above a 

temperature θc called Curie temperature. Experimentally 

this diminution leads to a progressive decrease of coercive 

field with temperature. This characteristic is introduced 

into the model via the coercive field Ec. 

The coercive fields vs. temperature follows a Curie-

Weiss law. as defined by the:  

 

  
 

2
1

2
3

)(

33

2

B

a
E C

C

 


 

 

Where 
0

cE  is the value of coercive field for θ = 0 and θc is 

the Curie temperature of the material. It is then possible to 

calculate the remanent polarization (Pr) at a given 

temperature and to draw it as a function of θ (Fig. 7). 

Figure 7 shows a good correlation between the 

experimental and theoretical curves. This good agreement 

confirms the legitimacy of the proposed model. A 

ferroelectric-paraelectric transition is also observed at 

Curie temperature (200 ° C in our case) (Pr = 0).  

 

 
 

Fig. 7. Evolution of Pr as a function of temperature 

 

 

Then, the polarization remains constant (P = 0) when 

the temperature drops below the Curie temperature. This 

phenomenon is characteristic of piezoelectric ceramics 

because of their polycristallinity. Indeed, the orientation of 

domains below the Curie temperature is random. The sum 

of the spontaneous polarizations of each domain is 

therefore zero. It is interesting to note that for pure electric 

measurements, the presented model made it possible to 

determine the maximum temperature for practical use (TM) 

(cf. Figure 7). It indicates that the working temperature 

should not exceed 150°C. This value corresponds to the 

maximum of temperature before observing a dramatic 

decrease of piezoelectric properties. 

 

 

4. Prediction of dielectric constant  
 

After introducing the effects of electric field and 

temperature, it remains to determine the dielectric, 

piezoelectric and pyroelectric coefficients depending on 

temperature and electric field from the proposed model. 

For that, one should start by following piezoelectric 

constrictive equations, restricting to one dimension. These 

equations can be formulated with the temperature and the 

electric field as independent variables, thus giving: 

 

 pddEdD T  33                        
(6) 

 

PED  0                                  (7) 

 

where D, P, E,  and p correspond tot the electric 

displacement, the polarization, the electric field, the 

temperature and the pyroelectric coefficient, respectively.  

Since the polarization is large enough compared to 

E0 , EP 0 , then D can be considered equivalent 

to P. 

The coefficients are defined as: 

 




33

0 ),(


dE

EdP

 

 

and  

 

p
d

EdP




 ),( 0

                     (8) 

 

This model based on the resistance/ ferroelectric can 

simulate the behavior of a ceramic whatever the initial 

polarization and regardless of the applied electric field. 

The simulation results show the way for more general 

simulations. We can for example apply a static electric 

field (Estat) and superpose it an sinusoidal electric field. 

The comparison between the experimental curve and 

theoretical curve is shown in Figure. We observed that the 

two relative permittivities (experimental and simulation) 

vary similarly during a cycle of electric field. Such a good 

agreement between simulation and experiment proved that 

the proposed model allows to predict the dielectric 

constant (ε33) under electric field using only electric 

measurements P(E).  
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Fig. 8. Evolution of the relative permittivity as a function 

of the E 

 

 

5. Conclusions 
 

In summary, an extensive model based on Landau-

type phenomenological theory for polycrystallined 

ferroelectrics is proposed by summing the free energies of 

the domains. Using this model, polarization hysteresis 

loops of a PZT ceramic can be well simulated with or 

without energy dissipation. Unlike previous models, our 

model can accurately predict the coercive fields and 

remanent polarization values at any electric fields, 

temperatures and frequencies by using fewer parameters. 

The resulting nonlinear and hysteretic nature of 

piezoelectric materials induces a power limitation for 

heavy duty transducers or a lack of controllability for 

positioners. Consequently, a nonlinear modeling allows us 

to understand transducers behaviors and to determine 

limits of use. 

The proposed model was also used to predict the 

values of dielectric constant (ε33), and the results of such a 

prediction were compared to experimental data. A good 

agreement was found between simulation and 

experiments, proving that the model made it possible to 

predict the dielectric constant (ε33) variations, under 

electric field by using only P(E) cycle.  
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